Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Radiat Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616048

RESUMO

There have been a number of reported human exposures to high dose radiation, resulting from accidents at nuclear power plants (e.g., Chernobyl), atomic bombings (Hiroshima and Nagasaki), and mishaps in industrial and medical settings. If absorbed radiation doses are high enough, evolution of acute radiation syndromes (ARS) will likely impact both the bone marrow as well as the gastrointestinal (GI) tract. Damage incurred in the latter can lead to nutrient malabsorption, dehydration, electrolyte imbalance, altered microbiome and metabolites, and impaired barrier function, which can lead to septicemia and death. To prepare for a medical response should such an incident arise, the National Institute of Allergy and Infectious Diseases (NIAID) funds basic and translational research to address radiation-induced GI-ARS, which remains a critical and prioritized unmet need. Areas of interest include identification of targets for damage and mitigation, animal model development, and testing of medical countermeasures (MCMs) to address GI complications resulting from radiation exposure. To appropriately model expected human responses, it is helpful to study analogous disease states in the clinic that resemble GI-ARS, to inform on best practices for diagnosis and treatment, and translate them back to inform nonclinical drug efficacy models. For these reasons, the NIAID partnered with two other U.S. government agencies (the Biomedical Advanced Research and Development Authority, and the Food and Drug Administration), to explore models, biomarkers, and diagnostics to improve understanding of the complexities of GI-ARS and investigate promising treatment approaches. A two-day workshop was convened in August 2022 that comprised presentations from academia, industry, healthcare, and government, and highlighted talks from 26 subject matter experts across five scientific sessions. This report provides an overview of information that was presented during the conference, and important discussions surrounding a broad range of topics that are critical for the research, development, licensure, and use of MCMs for GI-ARS.

2.
Radiat Res ; 201(4): 338-365, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453643

RESUMO

The U.S. Government is committed to maintaining a robust research program that supports a portfolio of scientific experts who are investigating the biological effects of radiation exposure. On August 17 and 18, 2023, the Radiation and Nuclear Countermeasures Program, within the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), partnered with the National Cancer Institute, NIH, the National Aeronautics and Space Administration, and the Radiation Injury Treatment Network to convene a workshop titled, Advanced Technologies in Radiation Research (ATRR), which focused on the use of advanced technologies under development or in current use to accelerate radiation research. This meeting report provides a comprehensive overview of the research presented at the workshop, which included an assembly of subject matter experts from government, industry, and academia. Topics discussed during the workshop included assessments of acute and delayed effects of radiation exposure using modalities such as clustered regularly interspaced short palindromic repeats (CRISPR) - based gene editing, tissue chips, advanced computing, artificial intelligence, and immersive imaging techniques. These approaches are being applied to develop products to diagnose and treat radiation injury to the bone marrow, skin, lung, and gastrointestinal tract, among other tissues. The overarching goal of the workshop was to provide an opportunity for the radiation research community to come together to assess the technological landscape through sharing of data, methodologies, and challenges, followed by a guided discussion with all participants. Ultimately, the organizers hope that the radiation research community will benefit from the workshop and seek solutions to scientific questions that remain unaddressed. Understanding existing research gaps and harnessing new or re-imagined tools and methods will allow for the design of studies to advance medical products along the critical path to U.S. Food and Drug Administration approval.


Assuntos
Inteligência Artificial , Lesões por Radiação , Humanos , Pulmão , National Institute of Allergy and Infectious Diseases (U.S.) , Lesões por Radiação/tratamento farmacológico , Pele , Estados Unidos
3.
Radiat Res ; 201(4): 330-337, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38348567

RESUMO

Developing and maintaining a robust and diverse scientific workforce is crucial to advance knowledge, drive innovation, and tackle societal issues that impact the economy and human health. The shortage of trained professionals in radiation and nuclear sciences derives from many factors, such as scarcity of specialized coursework, programming, professional development, and experiential learning at educational institutions, which significantly disrupt the training pipeline. Other challenges include small numbers of faculty and educators with specialized radiation/nuclear expertise that are continually overextended professionally and scientifically, with the burden of training falling on this subset of individuals. Even more alarming is the recent loss of radiobiologists due to increased retirements and deaths, leaving the radiobiology community with a void of mentors and knowledge. Lastly, inconsistency in acquiring stable grant funding to recruit and retain scientists is a major hurdle to training the next generation of radiation and nuclear scientists. Recommendations from the scientific community and the National Academies of Sciences, Engineering, and Medicine describe the need to bolster educational resources and provide more hands-on training experiences. Of equal importance was the suggestion that funding agencies provide more opportunities for training and tracking the radiation workforce. The Radiation and Nuclear Countermeasures Program (RNCP), and the Office of Research Training and Special Programs (ORTSP), both within the National Institute of Allergy and Infectious Diseases (NIAID) are committed to helping to develop and sustain the radiation research workforce. This commentary illustrates the importance of addressing radiation workforce development and outlines steps that the RNCP is taking to help mitigate the issue. In addition, the role for Diversity, Equity, Inclusion, and Accessibility (DEIA) in helping to increase the number of students trained in the radiation sciences is discussed, and the NIH's DEIA priorities and RNCP efforts to improve DEIA in the research community are highlighted. One of the main goals of this commentary is to provide awareness of available educational (i.e., development of a radiation biologist eBook) and funding resources. A summary of available awards targeting early- to mid-stage investigators and diversity candidates is given, and it is hoped that this list, although not exhaustive and not specific for all focus areas in radiation (e.g., cancer research), will encourage more radiation biologists to explore and apply to these under-utilized opportunities.


Assuntos
Pesquisadores , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pesquisadores/educação , Recursos Humanos
4.
Disaster Med Public Health Prep ; 18: e35, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38384183

RESUMO

Although chemical and radiological agents cause toxicity through different mechanisms, the multiorgan injuries caused by these threats share similarities that convene on the level of basic biological responses. This publication will discuss these areas of convergence and explore "multi-utility" approaches that could be leveraged to address common injury mechanisms underlying actions of chemical and radiological agents in a threat-agnostic manner. In addition, we will provide an overview of the current state of radiological and chemical threat research, discuss the US Government's efforts toward medical preparedness, and identify potential areas for collaboration geared toward enhancing preparedness and response against radiological and chemical threats. We also will discuss previous regulatory experience to provide insight on how to navigate regulatory paths for US Food and Drug Administration (FDA) approval/licensure/clearance for products addressing chemical or radiological/nuclear threats. This publication follows a 2022 trans-agency meeting titled, "Overlapping Science in Radiation and Sulfur Mustard Exposures of Skin and Lung: Consideration of Models, Mechanisms, Organ Systems, and Medical Countermeasures," sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), a part of the National Institutes of Health (NIH). Discussions from this meeting explored the overlapping nature of radiation and chemical injury and spurred increased interest in how preparedness for one threat leads to preparedness for the other. Herein, subject matter experts from the NIAID and the Biomedical Advanced Research and Development Authority (BARDA), a part of the Administration for Strategic Preparedness and Response (ASPR), summarize the knowledge gained from recently funded biomedical research, as well as insights from the 2022 meeting. These topics include identification of common areas for collaboration, potential use of biomarkers of injury to identify injuries caused by both hazards, and common and widely available treatments that could treat damage caused by radiological or chemical threats.


Assuntos
Liberação Nociva de Radioativos , Humanos , Estados Unidos , Pulmão , Pele , United States Dept. of Health and Human Services
5.
Radiat Res ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407357

RESUMO

The Radiation and Nuclear Countermeasures Program (RNCP) at the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) was established to facilitate the development of medical countermeasures (MCMs) and diagnostic approaches for use in a radiation public health emergency. Approvals for MCMs can be very challenging but are made possible under the United States Food and Drug Administration (FDA) Animal Rule, which is designed to enable licensure of drugs or biologics when clinical efficacy studies are unethical or unfeasible. The NIAID portfolio includes grants, contracts, and inter-agency agreements designed to span all aspects of drug development and encompasses basic research through FDA approval. In addition, NIAID manages an active portfolio of biodosimetry approaches to assess injuries and absorbed radiation levels to guide triage and treatment decisions. NIAID, together with grantees, contractors, and other stakeholders with promising products, works to advance candidate MCMs and biodosimetry tools through an established product development pipeline. In addition to managing grants and contracts, NIAID tests promising candidates in our established preclinical animal models, and the NIAID Program Officers work closely with sponsors as product managers to guide them through the process. In addition, a valuable benefit for stakeholders is working with the NIAID Office of Regulatory Affairs, where NIAID coordinates with the FDA to facilitate interactions between sponsors and the agency. Activities funded by NIAID include basic research (e.g., library screens to discover new products, determine early efficacy, and delineate mechanism of action) and the development of small and large animal models of radiation-induced hematopoietic, gastrointestinal, lung, kidney, and skin injury, radiation combined injury, and radionuclide decorporation. NIAID also sponsors Good Laboratory Practice product safety, pharmacokinetic, pharmacodynamic, and toxicology studies, as well as efficacy and dose-ranging studies to optimize product regimens. For later-stage candidates, NIAID funds large-scale manufacturing and formulation development of products. The program also supports Phase 1 human clinical studies to ensure human safety and to bridge pharmacokinetic, pharmacodynamic, and efficacy data from animals to humans. To date, NIAID has supported >900 animal studies and one clinical study, evaluating >500 new/repurposed radiation MCMs and biodosimetric approaches. NIAID sponsorship led to the approval of three of the four drugs for acute radiation syndrome under the FDA Animal Rule, five Investigational New Drug applications, and 18 additional submissions for Investigational Device Exemptions, while advancing 38 projects to the Biomedical Advanced Research and Development Authority for follow-on research and development.

6.
Int J Radiat Biol ; 100(3): 486-504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166195

RESUMO

PURPOSE: Natural history studies have been informative in dissecting radiation injury, isolating its effects, and compartmentalizing injury based on the extent of exposure and the elapsed time post-irradiation. Although radiation injury models are useful for investigating the mechanism of action in isolated subsyndromes and development of medical countermeasures (MCMs), it is clear that ionizing radiation exposure leads to multi-organ injury (MOI). METHODS: The Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases partnered with the Biomedical Advanced Research and Development Authority to convene a virtual two-day meeting titled 'Radiation-Induced Multi-Organ Injury' on June 7-8, 2022. Invited subject matter experts presented their research findings in MOI, including study of mechanisms and possible MCMs to address complex radiation-induced injuries. RESULTS: This workshop report summarizes key information from each presentation and discussion by the speakers and audience participants. CONCLUSIONS: Understanding the mechanisms that lead to radiation-induced MOI is critical to advancing candidate MCMs that could mitigate the injury and reduce associated morbidity and mortality. The observation that some of these mechanisms associated with MOI include systemic injuries, such as inflammation and vascular damage, suggests that MCMs that address systemic pathways could be effective against multiple organ systems.


Assuntos
Lesões por Radiação , Estados Unidos , Humanos , Lesões por Radiação/etiologia , National Institute of Allergy and Infectious Diseases (U.S.)
7.
Int J Radiat Biol ; 100(3): 466-485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37991728

RESUMO

PURPOSE: The Sex Differences in Radiation Research workshop addressed the role of sex as a confounder in radiation research and its implication in real-world radiological and nuclear applications. METHODS: In April 2022, HHS-wide partners from the Radiation and Nuclear Countermeasures Program, the Office of Research on Women's Health National Institutes of Health Office of Women's Health, U.S. Food and Drug Administration, and the Radiological and Nuclear Countermeasures Branch at the Biomedical Advanced Research and Development Authority conducted a workshop to address the scientific implication and knowledge gaps in understanding sex in basic and translational research. The goals of this workshop were to examine sex differences in 1. Radiation animal models and understand how these may affect radiation medical countermeasure development; 2. Biodosimetry and/or biomarkers used to assess acute radiation syndrome, delayed effects of acute radiation exposure, and/or predict major organ morbidities; 3. medical research that lacks representation from both sexes. In addition, regulatory policies that influence inclusion of women in research, and the gaps that exist in drug development and device clearance were discussed. Finally, real-world sex differences in human health scenarios were also considered. RESULTS: This report provides an overview of the two-day workshop, and open discussion among academic investigators, industry researchers, and U.S. government representatives. CONCLUSIONS: This meeting highlighted that current study designs lack the power to determine statistical significance based on sex, and much is unknown about the underlying factors that contribute to these differences. Investigators should accommodate both sexes in all stages of research to ensure that the outcome is robust, reproducible, and accurate, and will benefit public health.


Assuntos
Síndrome Aguda da Radiação , Pesquisa Biomédica , Masculino , Animais , Feminino , Humanos , Estados Unidos , Caracteres Sexuais , Projetos de Pesquisa
8.
Int J Radiat Biol ; 100(1): 1-6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37695653

RESUMO

The cornerstones of science advancement are rigor in performing scientific research, reproducibility of research findings and unbiased reporting of design and results of the experiments. For radiation research, this requires rigor in describing experimental details as well as the irradiation protocols for accurate, precise and reproducible dosimetry. Most institutions conducting radiation biology research in in vitro or animal models do not have describe experimental irradiation protocols in sufficient details to allow for balanced review of their publication nor for other investigators to replicate published experiments. The need to increase and improve dosimetry standards, traceability to National Institute of Standards and Technology (NIST) standard beamlines, and to provide dosimetry harmonization within the radiation biology community has been noted for over a decade both within the United States and France. To address this requirement subject matter experts have outlined minimum reporting standards that should be included in published literature for preclinical irradiators and dosimetry.


Assuntos
Radiobiologia , Radiometria , Animais , Estados Unidos , Reprodutibilidade dos Testes , Radiometria/métodos , Modelos Animais , França
9.
Radiat Res ; 200(4): 396-416, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38152282

RESUMO

The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage. The immune system is responsible for tissue repair and restoration, which is made more challenging when it is in the process of self-recovery. Because of these challenges, the Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID), along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN) sponsored a two-day meeting titled Immune Dysfunction from Radiation Exposure held on September 9-10, 2020. The intent was to discuss the manifestations and mechanisms of radiation-induced immune dysfunction in people and animals, identify knowledge gaps, and discuss possible treatments to restore immune function and enhance tissue repair after irradiation.


Assuntos
Lesões por Radiação , Animais , Humanos , Lesões por Radiação/terapia , Cicatrização
10.
Disaster Med Public Health Prep ; 17: e552, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37852927

RESUMO

PURPOSE: To summarize presentations and discussions from the 2022 trans-agency workshop titled "Overlapping science in radiation and sulfur mustard (SM) exposures of skin and lung: Consideration of models, mechanisms, organ systems, and medical countermeasures." METHODS: Summary on topics includes: (1) an overview of the radiation and chemical countermeasure development programs and missions; (2) regulatory and industry perspectives for drugs and devices; 3) pathophysiology of skin and lung following radiation or SM exposure; 4) mechanisms of action/targets, biomarkers of injury; and 5) animal models that simulate anticipated clinical responses. RESULTS: There are striking similarities between injuries caused by radiation and SM exposures. Primary outcomes from both types of exposure include acute injuries, while late complications comprise chronic inflammation, oxidative stress, and vascular dysfunction, which can culminate in fibrosis in both skin and lung organ systems. This workshop brought together academic and industrial researchers, medical practitioners, US Government program officials, and regulators to discuss lung-, and skin- specific animal models and biomarkers, novel pathways of injury and recovery, and paths to licensure for products to address radiation or SM injuries. CONCLUSIONS: Regular communications between the radiological and chemical injury research communities can enhance the state-of-the-science, provide a unique perspective on novel therapeutic strategies, and improve overall US Government emergency preparedness.


Assuntos
Queimaduras Químicas , Gás de Mostarda , Animais , Humanos , Gás de Mostarda/toxicidade , Pulmão , Pele , Biomarcadores/metabolismo
11.
Cytogenet Genome Res ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37742625

RESUMO

Established in 2004, the Radiation and Nuclear Countermeasures Program (RNCP), within the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) has the central mission to advance medical countermeasure mitigators/therapeutics, and biomarkers and technologies to assess, triage, and inform medical management of patients experiencing acute radiation syndrome (ARS) and/or the delayed effects of acute radiation exposure (DEARE). The RNCP biodosimetry mission space encompasses: 1) basic research to elucidate novel approaches for rapid and accurate assessment of radiation exposure, 2) studies to support advanced development for U.S. Food and Drug Administration (FDA) clearance of promising triage or treatment devices/approaches; 3) characterization of biomarkers and/or assays to determine degree of tissue or organ dose that can predict outcome of radiation injuries (i.e., organ failure, morbidity, and/or mortality), and 4) outreach efforts to facilitate interactions with researchers developing cutting edge biodosimetry approaches. Thus far, no biodosimetry device has been FDA cleared for use during a radiological/nuclear incident. At NIAID, advancement of radiation biomarkers and biodosimetry approaches is facilitated by a variety of funding mechanisms (grants, contracts, cooperative and inter-agency agreements, and Small Business Innovation Research awards), with the objective of advancing devices and assays toward clearance, as outlined in the FDA's Radiation Biodosimetry Medical Countermeasure Devices Guidance. The ultimate goal of the RNCP biodosimetry program is to develop and establish accurate and reliable biodosimetry tools that will improve radiation preparedness and ultimately save lives during a radiological or nuclear incident.

13.
Int J Radiat Biol ; 99(7): 1009-1015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36763099

RESUMO

PURPOSE: The intent of this mini review is to pay homage to Dr. John E. Moulder's long and successful career in radiation science with the Medical College of Wisconsin. This effort will be done from the perspective of his history of U.S. Government funding for research into the biological pathways involved in radiation-induced normal tissue injuries, especially damage to the kidneys and heart, and pharmacological interventions. In addition, the impact of his steady guidance and leadership in the mentoring of junior scientists, and the development of meaningful collaborations with other researchers will be highlighted. CONCLUSION: Dr. John E. Moulder's contributions to the field of radiation research, through his strong character and reputation, his consistent and dedicated commitment to his colleagues and students, and his significant scientific advances, have been critical to moving the science forward, and will not be forgotten by those who knew him personally or through publications documenting his important work.


Assuntos
Tutoria , Humanos , Masculino , Universidades , Pesquisadores
14.
Radiat Res ; 199(3): 301-318, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656560

RESUMO

During a radiological or nuclear public health emergency, given the heterogeneity of civilian populations, it is incumbent on medical response planners to understand and prepare for a potentially high degree of interindividual variability in the biological effects of radiation exposure. A part of advanced planning should include a comprehensive approach, in which the range of possible human responses in relation to the type of radiation expected from an incident has been thoughtfully considered. Although there are several reports addressing the radiation response for special populations (as compared to the standard 18-45-year-old male), the current review surveys published literature to assess the level of consideration given to differences in acute radiation responses in certain sub-groups. The authors attempt to bring clarity to the complex nature of human biology in the context of radiation to facilitate a path forward for radiation medical countermeasure (MCM) development that may be appropriate and effective in special populations. Consequently, the focus is on the medical (as opposed to logistical) aspects of preparedness and response. Populations identified for consideration include obstetric, pediatric, geriatric, males, females, individuals of different race/ethnicity, and people with comorbidities. Relevant animal models, biomarkers of radiation injury, and MCMs are highlighted, in addition to underscoring gaps in knowledge and the need for consistent and early inclusion of these populations in research. The inclusion of special populations in preclinical and clinical studies is essential to address shortcomings and is an important consideration for radiation public health emergency response planning. Pursuing this goal will benefit the population at large by considering those at greatest risk of health consequences after a radiological or nuclear mass casualty incident.


Assuntos
Planejamento em Desastres , Incidentes com Feridos em Massa , Contramedidas Médicas , Lesões por Radiação , Masculino , Animais , Feminino , Humanos , Criança , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Saúde Pública
15.
Life Sci Space Res (Amst) ; 35: 9-19, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336375

RESUMO

Over the past 20+ years, the U.S. Government has made significant strides in establishing research funding and initiating a portfolio consisting of subject matter experts on radiation-induced biological effects in normal tissues. Research supported by the National Cancer Institute (NCI) provided much of the early findings on identifying cellular pathways involved in radiation injuries, due to the need to push the boundaries to kill tumor cells while minimizing damage to intervening normal tissues. By protecting normal tissue surrounding the tumors, physicians can deliver a higher radiation dose to tumors and reduce adverse effects related to the treatment. Initially relying on this critical NCI research, the National Institute of Allergy and Infectious Diseases (NIAID), first tasked with developing radiation medical countermeasures in 2004, has provided bridge funding to move basic research toward advanced development and translation. The goal of the NIAID program is to fund approaches that can one day be employed to protect civilian populations during a radiological or nuclear incident. In addition, with the reality of long-term space flights and the possibility of radiation exposures to both acute, high-intensity, and chronic lower-dose levels, the National Aeronautics and Space Administration (NASA) has identified requirements to discover and develop radioprotectors and mitigators to protect their astronauts during space missions. In sustained partnership with sister agencies, these three organizations must continue to leverage funding and findings in their overlapping research areas to accelerate biomarker identification and product development to help safeguard these different and yet undeniably similar human populations - cancer patients, public citizens, and astronauts.


Assuntos
Contramedidas Médicas , Lesões por Radiação , Voo Espacial , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Lesões por Radiação/prevenção & controle , Astronautas
16.
Radiat Res ; 198(5): 514-535, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001810

RESUMO

Animal models are necessary to demonstrate the efficacy of medical countermeasures (MCM) to mitigate/treat acute radiation syndrome and the delayed effects of acute radiation exposure and develop biodosimetry signatures for use in triage and to guide medical management. The use of animal models in radiation research allows for the simulation of the biological effects of exposure in humans. Robust and well-controlled animal studies provide a platform to address basic mechanistic and safety questions that cannot be conducted in humans. The U.S. Department of Health and Human Services has tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- through advanced-stage MCM development for radiation-induced injuries; and advancement of biodosimetry platforms and exploration of biomarkers for triage, definitive dose, and predictive purposes. Some of these NIAID-funded projects may transition to the Biomedical Advanced Research and Development Authority (BARDA), a component of the Office of the Assistant Secretary for Preparedness and Response in the U.S. Department of Health and Human Services, which is tasked with the advanced development of MCMs to include pharmacokinetic, exposure, and safety assessments in humans. Guided by the U.S. Food and Drug Administration's (FDA) Animal Rule, both NIAID and BARDA work closely with researchers to advance product and device development, setting them on a course for eventual licensure/approval/clearance of their approaches by the FDA. In August 2020, NIAID partnered with BARDA to conduct a workshop to discuss currently accepted animal care protocols and examine aspects of animal models that can influence outcomes of studies to explore MCM efficacy for potential harmonization. This report provides an overview of the two-day workshop, which includes a series of special topic presentations followed by panel discussions with subject-matter experts from academia, industry partners, and select governmental agencies.


Assuntos
Síndrome Aguda da Radiação , Contramedidas Médicas , Animais , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Síndrome Aguda da Radiação/terapia , Triagem
17.
Radiat Res ; 197(5): 533-553, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35113982

RESUMO

The Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases (NIAID), is tasked with the mandate of identifying biodosimetry tests to assess exposure and medical countermeasures (MCMs) to mitigate/treat injuries to individuals exposed to significant doses of ionizing radiation from a radiological/nuclear incident, hosted. To fulfill this mandate, the Radiation and Nuclear Countermeasures Program (RNCP), hosted a workshop in 2018 workshop entitled "Policies and Regulatory Pathways to U.S. FDA licensure: Radiation Countermeasures and Biodosimetry Devices." The purpose of the meeting was to facilitate the advancement of MCMs and biodosimetry devices by assessing the research devices and animal models used in preclinical studies; government policies on reproducibility, rigor and robustness; regulatory considerations for MCMs and biodosimetry devices; and lessons learned from sponsors of early stage MCM or biodosimetry devices. Meeting presentations were followed by a NIAID-led, open discussion among academic investigators, industry researchers and U.S. government representatives.


Assuntos
Contramedidas Médicas , Animais , Modelos Animais , National Institute of Allergy and Infectious Diseases (U.S.) , Políticas , Reprodutibilidade dos Testes , Estados Unidos
18.
Int J Radiat Biol ; 98(5): 873-877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34870543

RESUMO

PURPOSE: An effective response for a mass-casualty incident requires understanding the relevant basic science and physical impact; detailed preparedness among jurisdictions; and clear, sequential response planning, including formal operational exercises, logistics, interagency, and public-private coordination, rapid activation of resilience, and continual improvement from lessons learned and new knowledge. This ConRad 2021 meeting report describes steps for civilian medical and public health response planning for a nuclear detonation; the utility of this type of planning for broader application; and extension of this planning to the international community. CONCLUSION: A nuclear detonation requires a response within minutes to what will be a large-scale disaster complicated by radiation, including some elements that are similar to a broad range of incidents. The response could be further complicated if multiple incidents occur simultaneously. Required are detailed planning, preparedness and scripting for an immediate operational response, addressing clinical manifestations of evolving radiation illness, and flexibility to adapt to a rapidly changing situation. This need translates into the use of just-in-time information; effective, credible communication; situational awareness on a global scale; and a template upon which to apply capabilities in a multi-sector response. This effort is greatly facilitated using a 'playbook' approach, the basics of which are presented.


Assuntos
Planejamento em Desastres , Incidentes com Feridos em Massa , Lesões por Radiação , Humanos
19.
Radiat Res ; 197(5): 514-532, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34879151

RESUMO

Biomarkers are important indicators of biological processes in health or disease. For this reason, they play a critical role in advanced development of radiation biodosimetry tools and medical countermeasures (MCMs). They can aid in the assessment of radiation exposure level, extent of radiation-induced injury, and/or efficacy of a MCM. This meeting report summarizes the presentations and discussions from the 2020 workshop titled, "Biomarkers in Radiation Biodosimetry and Medical Countermeasures" sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) within the National Institute of Allergy and Infectious Diseases (NIAID). The main goals of this meeting were to: 1. Provide an overview on biomarkers and to focus on the state of science with regards to biomarkers specific to radiation biodosimetry and MCMs; 2. Understand developmental challenges unique to the role of biomarkers in the fields of radiation biodosimetry and MCM development; and 3. Identify existing gaps and needs for translational application.


Assuntos
Contramedidas Médicas , Exposição à Radiação , Lesões por Radiação , Radiometria , Biomarcadores , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Estados Unidos
20.
J Radiol Prot ; 42(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34488201

RESUMO

The threat of a large-scale radiological or nuclear (R/N) incident looms in the present-day climate, as noted most recently in an editorial in Scientific American (March 2021). These large-scale incidents are infrequent but affect large numbers of people. Smaller-scale R/N incidents occur more often, affecting smaller numbers of people. There is more awareness of acute radiation syndrome (ARS) in the medical community; however, ionising radiation-induced injuries to the skin are much less understood. This article will provide an overview of radiation-induced injuries to the skin, deeper tissues, and organs. The history and nomenclature; types and causes of injuries; pathophysiology; evaluation and diagnosis; current medical management; and current research of the evaluation and management are presented. Cutaneous radiation injuries (CRI) or local radiation injuries (LRI) may lead to cutaneous radiation syndrome, a sub-syndrome of ARS. These injuries may occur from exposure to radioactive particles suspended in the environment (air, soil, water) after a nuclear detonation or an improvised nuclear detonation (IND), a nuclear power plant incident, or an encounter with a radioactive dispersal or exposure device. These incidents may also result in a radiation-combined injury; a chemical, thermal, or traumatic injury, with radiation exposure. Skin injuries from medical diagnostic and therapeutic imaging, medical misadministration of nuclear medicine or radiotherapy, occupational exposures (including research) to radioactive sources are more common but are not the focus of this manuscript. Diagnosis and evaluation of injuries are based on the scenario, clinical picture, and dosimetry, and may be assisted through advanced imaging techniques. Research-based multidisciplinary therapies, both in the laboratory and clinical trial environments, hold promise for future medical management. Great progress is being made in recognising the extent of injuries, understanding their pathophysiology, as well as diagnosis and management; however, research gaps still exist.


Assuntos
Síndrome Aguda da Radiação , Liberação Nociva de Radioativos , Síndrome Aguda da Radiação/diagnóstico , Síndrome Aguda da Radiação/etiologia , Humanos , Radiação Ionizante , Pele , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...